Tag Archives: MIT

Technique would reveal the basis

In recent years, the best-performing systems in artificial-intelligence research have come courtesy of neural networks, which look for patterns in training data that yield useful predictions or classifications. A neural net might, for instance, be trained to recognize certain objects in digital images or to infer the topics of texts.

But neural nets are black boxes. After training, a network may be very good at classifying data, but even its creators will have no idea why. With visual data, it’s sometimes possible to automate experiments that determine which visual features a neural net is responding to. But text-processing systems tend to be more opaque.

At the Association for Computational Linguistics’ Conference on Empirical Methods in Natural Language Processing, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) will present a new way to train neural networks so that they provide not only predictions and classifications but rationales for their decisions.

“In real-world applications, sometimes people really want to know why the model makes the predictions it does,” says Tao Lei, an MIT graduate student in electrical engineering and computer science and first author on the new paper. “One major reason that doctors don’t trust machine-learning methods is that there’s no evidence.”

“It’s not only the medical domain,” adds Regina Barzilay, the Delta Electronics Professor of Electrical Engineering and Computer Science and Lei’s thesis advisor. “It’s in any domain where the cost of making the wrong prediction is very high. You need to justify why you did it.”

“There’s a broader aspect to this work, as well,” says Tommi Jaakkola, an MIT professor of electrical engineering and computer science and the third coauthor on the paper. “You may not want to just verify that the model is making the prediction in the right way; you might also want to exert some influence in terms of the types of predictions that it should make. How does a layperson communicate with a complex model that’s trained with algorithms that they know nothing about? They might be able to tell you about the rationale for a particular prediction. In that sense it opens up a different way of communicating with the model.”

Virtual brains

Neural networks are so called because they mimic — approximately — the structure of the brain. They are composed of a large number of processing nodes that, like individual neurons, are capable of only very simple computations but are connected to each other in dense networks.

In a process referred to as “deep learning,” training data is fed to a network’s input nodes, which modify it and feed it to other nodes, which modify it and feed it to still other nodes, and so on. The values stored in the network’s output nodes are then correlated with the classification category that the network is trying to learn — such as the objects in an image, or the topic of an essay.

Over the course of the network’s training, the operations performed by the individual nodes are continuously modified to yield consistently good results across the whole set of training examples. By the end of the process, the computer scientists who programmed the network often have no idea what the nodes’ settings are. Even if they do, it can be very hard to translate that low-level information back into an intelligible description of the system’s decision-making process.

In the new paper, Lei, Barzilay, and Jaakkola specifically address neural nets trained on textual data. To enable interpretation of a neural net’s decisions, the CSAIL researchers divide the net into two modules. The first module extracts segments of text from the training data, and the segments are scored according to their length and their coherence: The shorter the segment, and the more of it that is drawn from strings of consecutive words, the higher its score.

The segments selected by the first module are then passed to the second module, which performs the prediction or classification task. The modules are trained together, and the goal of training is to maximize both the score of the extracted segments and the accuracy of prediction or classification.

One of the data sets on which the researchers tested their system is a group of reviews from a website where users evaluate different beers. The data set includes the raw text of the reviews and the corresponding ratings, using a five-star system, on each of three attributes: aroma, palate, and appearance.

What makes the data attractive to natural-language-processing researchers is that it’s also been annotated by hand, to indicate which sentences in the reviews correspond to which scores. For example, a review might consist of eight or nine sentences, and the annotator might have highlighted those that refer to the beer’s “tan-colored head about half an inch thick,” “signature Guinness smells,” and “lack of carbonation.” Each sentence is correlated with a different attribute rating.

Reproduces aspects of human neurolog

MIT researchers and their colleagues have developed a new computational model of the human brain’s face-recognition mechanism that seems to capture aspects of human neurology that previous models have missed.

The researchers designed a machine-learning system that implemented their model, and they trained it to recognize particular faces by feeding it a battery of sample images. They found that the trained system included an intermediate processing step that represented a face’s degree of rotation — say, 45 degrees from center — but not the direction — left or right.

This property wasn’t built into the system; it emerged spontaneously from the training process. But it duplicates an experimentally observed feature of the primate face-processing mechanism. The researchers consider this an indication that their system and the brain are doing something similar.

“This is not a proof that we understand what’s going on,” says Tomaso Poggio, a professor of brain and cognitive sciences at MIT and director of the Center for Brains, Minds, and Machines (CBMM), a multi-institution research consortium funded by the National Science Foundation and headquartered at MIT. “Models are kind of cartoons of reality, especially in biology. So I would be surprised if things turn out to be this simple. But I think it’s strong evidence that we are on the right track.”

Indeed, the researchers’ new paper includes a mathematical proof that the particular type of machine-learning system they use, which was intended to offer what Poggio calls a “biologically plausible” model of the nervous system, will inevitably yield intermediary representations that are indifferent to angle of rotation.

Poggio, who is also a primary investigator at MIT’s McGovern Institute for Brain Research, is the senior author on a paper describing the new work, which appeared today in the journal Computational Biology. He’s joined on the paper by several other members of both the CBMM and the McGovern Institute: first author Joel Leibo, a researcher at Google DeepMind, who earned his PhD in brain and cognitive sciences from MIT with Poggio as his advisor; Qianli Liao, an MIT graduate student in electrical engineering and computer science; Fabio Anselmi, a postdoc in the IIT@MIT Laboratory for Computational and Statistical Learning, a joint venture of MIT and the Italian Institute of Technology; and Winrich Freiwald, an associate professor at the Rockefeller University.

The new paper is “a nice illustration of what we want to do in [CBMM], which is this integration of machine learning and computer science on one hand, neurophysiology on the other, and aspects of human behavior,” Poggio says. “That means not only what algorithms does the brain use, but what are the circuits in the brain that implement these algorithms.”

Poggio has long believed that the brain must produce “invariant” representations of faces and other objects, meaning representations that are indifferent to objects’ orientation in space, their distance from the viewer, or their location in the visual field. Magnetic resonance scans of human and monkey brains suggested as much, but in 2010, Freiwald published a study describing the neuroanatomy of macaque monkeys’ face-recognition mechanism in much greater detail.

Freiwald showed that information from the monkey’s optic nerves passes through a series of brain locations, each of which is less sensitive to face orientation than the last. Neurons in the first region fire only in response to particular face orientations; neurons in the final region fire regardless of the face’s orientation — an invariant representation.

But neurons in an intermediate region appear to be “mirror symmetric”: That is, they’re sensitive to the angle of face rotation without respect to direction. In the first region, one cluster of neurons will fire if a face is rotated 45 degrees to the left, and a different cluster will fire if it’s rotated 45 degrees to the right. In the final region, the same cluster of neurons will fire whether the face is rotated 30 degrees, 45 degrees, 90 degrees, or anywhere in-between. But in the intermediate region, a particular cluster of neurons will fire if the face is rotated by 45 degrees in either direction, another if it’s rotated 30 degrees, and so on.

This is the behavior that the researchers’ machine-learning system reproduced. “It was not a model that was trying to explain mirror symmetry,” Poggio says. “This model was trying to explain invariance, and in the process, there is this other property that pops out.”

Neural training

The researchers’ machine-learning system is a neural network, so called because it roughly approximates the architecture of the human brain. A neural network consists of very simple processing units, arranged into layers, that are densely connected to the processing units — or nodes — in the layers above and below. Data are fed into the bottom layer of the network, which processes them in some way and feeds them to the next layer, and so on. During training, the output of the top layer is correlated with some classification criterion — say, correctly determining whether a given image depicts a particular person.

Lets nonexperts optimize programs

Dynamic programming is a technique that can yield relatively efficient solutions to computational problems in economics, genomic analysis, and other fields. But adapting it to computer chips with multiple “cores,” or processing units, requires a level of programming expertise that few economists and biologists have.

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Stony Brook University aim to change that, with a new system that allows users to describe what they want their programs to do in very general terms. It then automatically produces versions of those programs that are optimized to run on multicore chips. It also guarantees that the new versions will yield exactly the same results that the single-core versions would, albeit much faster.

In experiments, the researchers used the system to “parallelize” several algorithms that used dynamic programming, splitting them up so that they would run on multicore chips. The resulting programs were between three and 11 times as fast as those produced by earlier techniques for automatic parallelization, and they were generally as efficient as those that were hand-parallelized by computer scientists.

The researchers presented their new system last week at the Association for Computing Machinery’s conference on Systems, Programming, Languages and Applications: Software for Humanity.

Dynamic programming offers exponential speedups on a certain class of problems because it stores and reuses the results of computations, rather than recomputing them every time they’re required.

“But you need more memory, because you store the results of intermediate computations,” says Shachar Itzhaky, first author on the new paper and a postdoc in the group of Armando Solar-Lezama, an associate professor of electrical engineering and computer science at MIT. “When you come to implement it, you realize that you don’t get as much speedup as you thought you would, because the memory is slow. When you store and fetch, of course, it’s still faster than redoing the computation, but it’s not as fast as it could have been.”

Outsourcing complexity

Computer scientists avoid this problem by reordering computations so that those requiring a particular stored value are executed in sequence, minimizing the number of times that the value has to be recalled from memory. That’s relatively easy to do with a single-core computer, but with multicore computers, when multiple cores are sharing data stored at multiple locations, memory management become much more complex. A hand-optimized, parallel version of a dynamic-programming algorithm is typically 10 times as long as the single-core version, and the individual lines of code are more complex, to boot.

The CSAIL researchers’ new system — dubbed Bellmania, after Richard Bellman, the applied mathematician who pioneered dynamic programming — adopts a parallelization strategy called recursive divide-and-conquer. Suppose that the task of a parallel algorithm is to perform a sequence of computations on a grid of numbers, known as a matrix. Its first task might be to divide the grid into four parts, each to be processed separately.

But then it might divide each of those four parts into four parts, and each of those into another four parts, and so on. Because this approach — recursion — involves breaking a problem into smaller subproblems, it naturally lends itself to parallelization.

Computers could be much more powerful than previously realized

Quantum computers promise huge speedups on some computational problems because they harness a strange physical property called entanglement, in which the physical state of one tiny particle depends on measurements made of another. In quantum computers, entanglement is a computational resource, roughly like a chip’s clock cycles — kilohertz, megahertz, gigahertz — and memory in a conventional computer.

In a recent paper in the journal Proceedings of the National Academy of Sciences, researchers at MIT and IBM’s Thomas J. Watson Research Center show that simple systems of quantum particles exhibit exponentially more entanglement than was previously believed. That means that quantum computers — or other quantum information devices — powerful enough to be of practical use could be closer than we thought.

Where ordinary computers deal in bits of information, quantum computers deal in quantum bits, or qubits. Previously, researchers believed that in a certain class of simple quantum systems, the degree of entanglement was, at best, proportional to the logarithm of the number of qubits.

“For models that satisfy certain physical-reasonability criteria — i.e., they’re not too contrived; they’re something that you could in principle realize in the lab — people thought that a factor of the log of the system size was the best you can do,” says Ramis Movassagh, a researcher at Watson and one of the paper’s two co-authors. “What we proved is that the entanglement scales as the square root of the system size. Which is really exponentially more.”

That means that a 10,000-qubit quantum computer could exhibit about 10 times as much entanglement as previously thought. And that difference increases exponentially as more qubits are added.

Logical or physical?

This matters because of the distinction, in quantum computing, between logical qubits and physical qubits. A logical qubit is an abstraction used to formulate quantum algorithms; a physical qubit is a tiny bit of matter whose quantum states are both controllable and entangled with those of other physical qubits.

A computation involving, say, 100 logical qubits would already be beyond the capacity of all the conventional computers in the world. But with most of today’s theoretical designs for general-purpose quantum computers, realizing a single logical qubit requires somewhere around 100 physical qubits. Most of the physical qubits are used for quantum error correction and to encode operations between logical qubits.

Since preserving entanglement across large groups of qubits is the biggest obstacle to developing working quantum devices, extracting more entanglement from smaller clusters of qubits could make quantum computing devices more practical.

Qubits are analogous to bits in a conventional computer, but where a conventional bit can take on the values 0 or 1, a qubit can be in “superposition,” meaning that it takes on both values at once. If qubits are entangled, they can take on all their possible states simultaneously. One qubit can take on two states, two qubits four, three qubits eight, four qubits 16, and so on. It’s the ability to, in some sense, evaluate computational alternatives simultaneously that gives quantum computers their extraordinary power.

Lead to fully automated speech recognition

Speech recognition systems, such as those that convert speech to text on cellphones, are generally the result of machine learning. A computer pores through thousands or even millions of audio files and their transcriptions, and learns which acoustic features correspond to which typed words.

But transcribing recordings is costly, time-consuming work, which has limited speech recognition to a small subset of languages spoken in wealthy nations.

At the Neural Information Processing Systems conference this week, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) are presenting a new approach to training speech-recognition systems that doesn’t depend on transcription. Instead, their system analyzes correspondences between images and spoken descriptions of those images, as captured in a large collection of audio recordings. The system then learns which acoustic features of the recordings correlate with which image characteristics.

“The goal of this work is to try to get the machine to learn language more like the way humans do,” says Jim Glass, a senior research scientist at CSAIL and a co-author on the paper describing the new system. “The current methods that people use to train up speech recognizers are very supervised. You get an utterance, and you’re told what’s said. And you do this for a large body of data.

“Big advances have been made — Siri, Google — but it’s expensive to get those annotations, and people have thus focused on, really, the major languages of the world. There are 7,000 languages, and I think less than 2 percent have ASR [automatic speech recognition] capability, and probably nothing is going to be done to address the others. So if you’re trying to think about how technology can be beneficial for society at large, it’s interesting to think about what we need to do to change the current situation. And the approach we’ve been taking through the years is looking at what we can learn with less supervision.”

Joining Glass on the paper are first author David Harwath, a graduate student in electrical engineering and computer science (EECS) at MIT; and Antonio Torralba, an EECS professor.

Visual semantics

The version of the system reported in the new paper doesn’t correlate recorded speech with written text; instead, it correlates speech with groups of thematically related images. But that correlation could serve as the basis for others.

If, for instance, an utterance is associated with a particular class of images, and the images have text terms associated with them, it should be possible to find a likely transcription of the utterance, all without human intervention. Similarly, a class of images with associated text terms in different languages could provide a way to do automatic translation.

Conversely, text terms associated with similar clusters of images, such as, say, “storm” and “clouds,”  could be inferred to have related meanings. Because the system in some sense learns words’ meanings — the images associated with them — and not just their sounds, it has a wider range of potential applications than a standard speech recognition system.

To test their system, the researchers used a database of 1,000 images, each of which had a recording of a free-form verbal description associated with it. They would feed their system one of the recordings and ask it to retrieve the 10 images that best matched it. That set of 10 images would contain the correct one 31 percent of the time.

Provided key Knowladge

This week the Association for Computer Machinery (ACM) announced its 2016 fellows, which include four principal investigators from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL): professors Erik Demaine, Fredo Durand, William Freeman, and Daniel Jackson. They were among the 1 percent of ACM members to receive the distinction.

“Erik, Fredo, Bill, and Daniel are wonderful colleagues and extraordinary computer scientists, and I am so happy to see their contributions recognized with the most prestigious member grade of the ACM,” says CSAIL Director Daniela Rus, who herself was named a fellow last year. “All of us at CSAIL are very proud of these researchers for receiving these esteemed honors.”

ACM’s 53 fellows for 2016 were named for their distinctive contributions spanning such computer science disciplines as computer vision, computer graphics, software design, machine learning, algorithms, and theoretical computer science.

“As nearly 100,000 computing professionals are members of our association, to be selected to join the top 1 percent is truly an honor,” says ACM President Vicki L. Hanson. “Fellows are chosen by their peers and hail from leading universities, corporations and research labs throughout the world. Their inspiration, insights and dedication bring immeasurable benefits that improve lives and help drive the global economy. ”

Demaine was selected for contributions to geometric computing, data structures, and graph algorithms. His research interests include the geometry of understanding how proteins fold and the computational difficulty of playing games. He received the MacArthur Fellowship for his work in computational geometry. He and his father Martin Demaine have produced numerous curved-crease sculptures that explore the intersection of science and art — and that are currently in the Museum of Modern Art in New York.

A Department of Electrical Engineering and Computer Science (EECS) professor whose research spans video graphics and photo-generation, Durand was selected for contributions to computational photography and computer graphics rendering. He also works to develop new algorithms to enable image enhancements and improved scene understanding. He received the ACM SIGGRAPH Computer Graphics Achievement Award in 2016.

Freeman is the Thomas and Gerd Perkins Professor of EECS at MIT. He was selected as a fellow for his contributions to computer vision, machine learning, and computer graphics. His research interests also include Bayesian models of visual perception and computational photography. He received “Outstanding Paper” awards at computer vision and machine learning conferences in 1997, 2006, 2009 and 2012, as well as ACM’s “Test of Time” awards for papers from 1990 and 1995.

Jackson is an EECS professor and associate director of CSAIL whose work has focused on improving the functionality and dependability of software through lightweight formal methods. He was selected by ACM for contributions to software modeling and the creation of Alloy, a modeling language that has been used to find flaws in many designs and protocols. He is a MacVicar Fellow and also received this year’s ACM SIGSOFT Impact Paper Award.

Computers that explain themselves

Machines that predict the future, robots that patch wounds, and wireless emotion-detectors are just a few of the exciting projects that came out of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) this year. Here’s a sampling of 16 highlights from 2016 that span the many computer science disciplines that make up CSAIL.

Robots for exploring Mars — and your stomach

  • A team led by CSAIL director Daniela Rus developed an ingestible origami robot that unfolds in the stomach to patch wounds and remove swallowed batteries.
  • Researchers are working on NASA’s humanoid robot, “Valkyrie,” who will be programmed for trips into outer space and to autonomously perform tasks.
  • A 3-D printed robot was made of both solids and liquids and printed in one single step, with no assembly required.

Keeping data safe and secure

  • CSAIL hosted a cyber summit that convened members of academia, industry, and government, including featured speakers Admiral Michael Rogers, director of the National Security Agency; and Andrew McCabe, deputy director of the Federal Bureau of Investigation.
  • Researchers came up with a system for staying anonymous online that uses less bandwidth to transfer large files between anonymous users.
  • A deep-learning system called AI2 was shown to be able to predict 85 percent of cyberattacks with the help of some human input.

Advancements in computer vision

  • A new imaging technique called Interactive Dynamic Video lets you reach in and “touch” objects in videos using a normal camera.
  • Researchers from CSAIL and Israel’s Weizmann Institute of Science produced a movie display called Cinema 3D that uses special lenses and mirrors to allow viewers to watch 3-D movies in a theater without having to wear those clunky 3-D glasses.
  • A new deep-learning algorithm can predict human interactions more accurately than ever before, by training itself on footage from TV shows like “Desperate Housewives” and “The Office.”
  • A group from MIT and Harvard University developed an algorithm that may help astronomers produce the first image of a black hole, stitching together telescope data to essentially turn the planet into one large telescope dish.

Tech to help with health

  • A team produced a robot that can help schedule and assign tasks by learning from humans, in fields like medicine and the military.
  • Researchers came up with an algorithm for identifying organs in fetal MRI scans to extensively evaluate prenatal health.
  • A wireless device called EQ-Radio can tell if you’re excited, happy, angry, or sad, by measuring breathing and heart rhythms.

Algorithms, systems and networks

  • A system called “Polaris” was found to load web pages 34 percent faster by decreasing network trips.
  • A team analyzed ant-colony behavior to create better algorithms for network communication, for applications such as social networks and collective decision-making among robot swarms.
  • Researchers trained neural networks to explain themselves by providing rationales for their decisions.

Data sets while preserving their fundamental

One way to handle big data is to shrink it. If you can identify a small subset of your data set that preserves its salient mathematical relationships, you may be able to perform useful analyses on it that would be prohibitively time consuming on the full set.

The methods for creating such “coresets” vary according to application, however. Last week, at the Annual Conference on Neural Information Processing Systems, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory and the University of Haifa in Israel presented a new coreset-generation technique that’s tailored to a whole family of data analysis tools with applications in natural-language processing, computer vision, signal processing, recommendation systems, weather prediction, finance, and neuroscience, among many others.

“These are all very general algorithms that are used in so many applications,” says Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT and senior author on the new paper. “They’re fundamental to so many problems. By figuring out the coreset for a huge matrix for one of these tools, you can enable computations that at the moment are simply not possible.”

As an example, in their paper the researchers apply their technique to a matrix — that is, a table — that maps every article on the English version of Wikipedia against every word that appears on the site. That’s 1.4 million articles, or matrix rows, and 4.4 million words, or matrix columns.

That matrix would be much too large to analyze using low-rank approximation, an algorithm that can deduce the topics of free-form texts. But with their coreset, the researchers were able to use low-rank approximation to extract clusters of words that denote the 100 most common topics on Wikipedia. The cluster that contains “dress,” “brides,” “bridesmaids,” and “wedding,” for instance, appears to denote the topic of weddings; the cluster that contains “gun,” “fired,” “jammed,” “pistol,” and “shootings” appears to designate the topic of shootings.

Joining Rus on the paper are Mikhail Volkov, an MIT postdoc in electrical engineering and computer science, and Dan Feldman, director of the University of Haifa’s Robotics and Big Data Lab and a former postdoc in Rus’s group.

The researchers’ new coreset technique is useful for a range of tools with names like singular-value decomposition, principal-component analysis, and latent semantic analysis. But what they all have in common is dimension reduction: They take data sets with large numbers of variables and find approximations of them with far fewer variables.

In this, these tools are similar to coresets. But coresets are application-specific, while dimension-reduction tools are general-purpose. That generality makes them much more computationally intensive than coreset generation — too computationally intensive for practical application to large data sets.

The researchers believe that their technique could be used to winnow a data set with, say, millions of variables — such as descriptions of Wikipedia pages in terms of the words they use — to merely thousands. At that point, a widely used technique like principal-component analysis could reduce the number of variables to mere hundreds, or even lower.

The researchers’ technique works with what is called sparse data. Consider, for instance, the Wikipedia matrix, with its 4.4 million columns, each representing a different word. Any given article on Wikipedia will use only a few thousand distinct words. So in any given row — representing one article — only a few thousand matrix slots out of 4.4 million will have any values in them. In a sparse matrix, most of the values are zero.

Crucially, the new technique preserves that sparsity, which makes its coresets much easier to deal with computationally. Calculations become lot easier if they involve a lot of multiplication by and addition of zero.

Paving a path to medicine

During January of her junior year at MIT, Caroline Colbert chose to do a winter externship at Massachusetts General Hospital (MGH). Her job was to shadow the radiation oncology staff, including the doctors that care for patients and medical physicists that design radiation treatment plans.

Colbert, now a senior in the Department of Nuclear Science and Engineering (NSE), had expected to pursue a career in nuclear power. But after working in a medical environment, she changed her plans.

She stayed at MGH to work on building a model to automate the generation of treatment plans for patients who will undergo a form of radiation therapy called volumetric-modulated arc therapy (VMAT). The work was so interesting that she is still involved with it and has now decided to pursue a doctoral degree in medical physics, a field that allows her to blend her training in nuclear science and engineering with her interest in medical technologies.

She’s even zoomed in on schools with programs that have accreditation from the Commission on Accreditation of Medical Physics Graduate Programs so she’ll have the option of having a more direct impact on patients. “I don’t know yet if I’ll be more interested in clinical work, research, or both,” she says. “But my hope is to work in a hospital setting.”

Many NSE students and faculty focus on nuclear energy technologies. But, says Colbert, “the department is really supportive of students who want to go into other industries.”

It was as a middle school student that Colbert first became interested in engineering. Later, in a chemistry class, a lesson about nuclear decay set her on a path towards nuclear science and engineering. “I thought it was so cool that one element can turn into another,” she says. “You think of elements as the fundamental building blocks of the physical world.”

Colbert’s parents, both from the Boston area, had encouraged her to apply to MIT. They also encouraged her towards the medical field. “They loved the idea of me being a doctor, and then when I decided on nuclear engineering, they wanted me to look into medical physics,” she says. “I was trying to make my own way. But when I did look seriously into medical physics, I had to admit that my parents were right.”

At MGH, Colbert’s work began with searching for practical ways to improve the generation of VMAT treatment plans. As with another form of radiation therapy called intensity-modulated radiation therapy (IMRT), the technology focuses radiation doses on the tumor and away from the healthy tissue surrounding it. The more accurate the dosing, the fewer side effects patients have after therapy.

With VMAT, a main challenge is in devising an accurate individualized treatment plan. Each plan is customized specifically to the patient’s anatomy. This design process is well defined for IMRT, which uses a set of intersecting beams to deliver radiation. VMAT also intersects beams but rotates them around the patient. “There are more degrees of freedom, so it should provide more accurate treatment, but it’s also more computationally difficult to optimize an individual treatment plan,” says Colbert.

Colbert spent the second half of her junior year developing improved algorithms under the supervision of Michael Young, a medical physics doctoral student at the University of Massachusetts and a research assistant at MGH. The idea was to use existing IMRT plans from anatomically similar patients as a starting point for developing a customized VMAT plan. “We needed to start the optimization algorithm in a place that was already good enough and would only get better from there,” she says.

Her work involved helping to build a database of existing IMRT radiation therapy plans used to treat MGH patients. She then worked on determining the search criteria required to pull the best information from the database to seed a starter plan that is primed for optimization for VMAT. The work drew on Colbert’s side-interest in computer science, which had grown out of a programming course she’d taken during an earlier January session at MIT.